Please use this identifier to cite or link to this item:
Title: Comparison of modeling methods and parametric study for a piezoelectric wind energy harvester
Authors: Zhao, Liya
Tang, Lihua
Yang, Yaowen
Keywords: DRNTU::Engineering::Materials::Energy materials
Issue Date: 2013
Source: Zhao, L., Tang, L., & Yang, Y. (2013). Comparison of modeling methods and parametric study for a piezoelectric wind energy harvester. Smart materials and structures, 22(12), 125003-.
Series/Report no.: Smart materials and structures
Abstract: Harvesting flow energy by exploiting transverse galloping of a bluff body attached to a piezoelectric cantilever is a prospective method to power wireless sensing systems. In order to better understand the electroaeroelastic behavior and further improve the galloping piezoelectric energy harvester (GPEH), an effective analytical model is required, which needs to incorporate both the electromechanical coupling and the aerodynamic force. Available electromechanical models for the GPEH include the lumped parameter single-degree-of-freedom (SDOF) model, the approximated distributed parameter model based on Rayleigh–Ritz discretization, and the distributed parameter model with Euler–Bernoulli beam representation. Each modeling method has its own advantages. The corresponding aerodynamic models are formulated using quasi-steady hypothesis (QSH). In this paper, the SDOF model, the Euler–Bernoulli distributed parameter model using single mode and the Euler–Bernoulli distributed parameter model using multi-modes are compared and validated with experimental results. Based on the comparison and validation, the most effective model is employed for the subsequent parametric study. The effects of load resistance, wind exposure area of the bluff body, mass of the bluff body and length of the piezoelectric sheets on the power output are investigated. These simulations can be exploited for designing and optimizing GPEHs for better performance.
ISSN: 0964-1726
DOI: 10.1088/0964-1726/22/12/125003
Rights: © 2013 IOP Publishing Ltd. This is the author created version of a work that has been peer reviewed and accepted for publication by Smart Materials and Structures, IOP Publishing Ltd. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [DOI:].
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:CEE Journal Articles

Files in This Item:
File Description SizeFormat 
manuscript -Comparison of Modeling Methods.pdfMain article658.45 kBAdobe PDFThumbnail

Citations 5

Updated on Jan 16, 2023

Web of ScienceTM
Citations 5

Updated on Feb 1, 2023

Page view(s) 20

Updated on Feb 4, 2023

Download(s) 5

Updated on Feb 4, 2023

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.