Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/99876
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZhao, Liyaen
dc.contributor.authorTang, Lihuaen
dc.contributor.authorYang, Yaowenen
dc.date.accessioned2014-10-17T03:17:52Zen
dc.date.accessioned2019-12-06T20:12:48Z-
dc.date.available2014-10-17T03:17:52Zen
dc.date.available2019-12-06T20:12:48Z-
dc.date.copyright2013en
dc.date.issued2013en
dc.identifier.citationZhao, L., Tang, L., & Yang, Y. (2013). Comparison of modeling methods and parametric study for a piezoelectric wind energy harvester. Smart materials and structures, 22(12), 125003-.en
dc.identifier.issn0964-1726en
dc.identifier.urihttps://hdl.handle.net/10356/99876-
dc.description.abstractHarvesting flow energy by exploiting transverse galloping of a bluff body attached to a piezoelectric cantilever is a prospective method to power wireless sensing systems. In order to better understand the electroaeroelastic behavior and further improve the galloping piezoelectric energy harvester (GPEH), an effective analytical model is required, which needs to incorporate both the electromechanical coupling and the aerodynamic force. Available electromechanical models for the GPEH include the lumped parameter single-degree-of-freedom (SDOF) model, the approximated distributed parameter model based on Rayleigh–Ritz discretization, and the distributed parameter model with Euler–Bernoulli beam representation. Each modeling method has its own advantages. The corresponding aerodynamic models are formulated using quasi-steady hypothesis (QSH). In this paper, the SDOF model, the Euler–Bernoulli distributed parameter model using single mode and the Euler–Bernoulli distributed parameter model using multi-modes are compared and validated with experimental results. Based on the comparison and validation, the most effective model is employed for the subsequent parametric study. The effects of load resistance, wind exposure area of the bluff body, mass of the bluff body and length of the piezoelectric sheets on the power output are investigated. These simulations can be exploited for designing and optimizing GPEHs for better performance.en
dc.format.extent19 p.en
dc.language.isoenen
dc.relation.ispartofseriesSmart materials and structuresen
dc.rights© 2013 IOP Publishing Ltd. This is the author created version of a work that has been peer reviewed and accepted for publication by Smart Materials and Structures, IOP Publishing Ltd. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [DOI:http://dx.doi.org/10.1088/0964-1726/22/12/125003].en
dc.subjectDRNTU::Engineering::Materials::Energy materialsen
dc.titleComparison of modeling methods and parametric study for a piezoelectric wind energy harvesteren
dc.typeJournal Articleen
dc.contributor.schoolSchool of Civil and Environmental Engineeringen
dc.identifier.doi10.1088/0964-1726/22/12/125003en
dc.description.versionAccepted versionen
item.fulltextWith Fulltext-
item.grantfulltextopen-
Appears in Collections:CEE Journal Articles
Files in This Item:
File Description SizeFormat 
manuscript -Comparison of Modeling Methods.pdfMain article658.45 kBAdobe PDFThumbnail
View/Open

SCOPUSTM   
Citations 5

170
Updated on Mar 19, 2024

Web of ScienceTM
Citations 5

139
Updated on Oct 27, 2023

Page view(s) 20

643
Updated on Mar 27, 2024

Download(s) 5

676
Updated on Mar 27, 2024

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.