Please use this identifier to cite or link to this item:
Title: Novel dual-layer hollow fiber membranes applied for forward osmosis process
Authors: Setiawan, Laurentia
Wang, Rong
Shi, Lei
Li, Kang
Fane, Anthony Gordon
Keywords: DRNTU::Engineering::Civil engineering
DRNTU::Engineering::Environmental engineering
Issue Date: 2012
Source: Setiawan, L., Wang, R., Shi, L., Li, K., & Fane, A. G. (2012). Novel dual-layer hollow fiber membranes applied for forward osmosis process. Journal of membrane science, 421-422, 238-246.
Series/Report no.: Journal of membrane science
Abstract: A novel dual-layer forward osmosis (FO) hollow fiber membrane has been designed and successfully fabricated by using a triple orifice spinneret. The fiber consists of two layers made from polyamide-imide (PAI) polymer for the outer layer and polyethersulfone (PES) polymer for the porous inner layer. Specifically, after obtaining asymmetric microporous PAI/PES dual-layer hollow fibers via non-solvent induced phase inversion, polyethyleneimine (PEI) polyelectrolyte modification on the outer PAI layer was applied to produce a nanofiltration (NF)-like thin layer, while the PES porous inner layer remained intact as PES is inert to PEI. The membrane morphology, structure and surface property were carefully tailored by adjusting polymer dope composition and spinning conditions. These membranes were subsequently characterized by a series of standard protocols in terms of membrane structure, permeability and salt rejection, and were utilized in FO process. It was found that the resultant dual-layer NF hollow fiber membrane can achieve pure water permeability of 15.9 l m−2 h−1 bar−1 and a high rejection to divalent cations up to 89%. In FO process, the dual-layer hollow fiber exhibited a water flux of 27.5 l m−2 h−1 in the orientation of active layer facing feed water by using 0.5 M MgCl2 as draw solution and de-ionized (DI) water as feed at room temperature. The newly developed dual layer hollow fibers outperform all the single layer and dual-layer NF hollow fibers reported in the literature for FO applications.
DOI: 10.1016/j.memsci.2012.07.020
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:CEE Journal Articles

Citations 5

Updated on Feb 7, 2023

Web of ScienceTM
Citations 5

Updated on Jan 25, 2023

Page view(s) 50

Updated on Feb 7, 2023

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.